
ljkl;kaj

Introduction

Acknowledgements

Change Point Detection with Dynamic Linear Modeling on COVID-19 Time Series Data

References

Denison University 
Riley Coburn
Research Advisor: Dr. Zhe Wang

Analysis

Background & Methods

Daumer M., and Falk M. (1998), “On-line change-point detection 
(for state space models) using multi-process Kalman filters,” 
Linear Algebra and its Applications, 284, 1–3.
Lee H., and, Roberts S.J. (2008), "On-line novelty detection using 
the Kalman filter and extreme value theory," 19th International 
Conference on Pattern Recognition, pp. 1-4.
Petris G., Petrone S., and Campagnoli P. (2009), “Dynamic Linear 
Models with R,” New York, NY: Springer.

A very special thank you to the Laurie and David Hodgson Faculty 
Support Endowment, without whom the funding for this project 
would not be possible. Another thank you goes out to Dr. Zhe
Wang, whose guidance and reassurance were essential in my 
completion of this research project. 

Background and Methods (cont.)
COVID-19 has had a massive impact on society over the 

last two and a half years. Lives have been and continue to be 
permanently affected by this virus. 

There has been many different phases to the COVID virus. 
Initially, most governments tried to contain it until a suitable 
vaccine could be developed and distributed to its citizens. 
Although this was attempted, it was rarely successful. Different 
variants of COVID-19 ran rampant worldwide causing the 
number of new cases in many countries to fluctuate with each 
new variant. The these fluctuations are marked as change 
points, or points where the transmission and contraction of the 
virus structurally changes. The following presents an offline 
change point detection method for COVID-19 time series. 

As aforementioned, the goal of this research is to present an 
offline change point detection method that could be 
implemented in an online setting. The offline method is one in 
which all of our data is known and we’re able to optimize model 
parameters using maximum likelihood estimation. With 
optimized parameters, the model could then be used on new 
observations and implemented as we receive new data. 

There are different ways of determining change points given 
some data. One such method is through a dynamic linear 
model. The premise of this model is that each observation, 𝑦! is 
dependent on the underlying state at time 𝑡, 𝜃!.

The first step in specifying a dynamic linear model is 
choice of prior distribution of 𝜃!. This initial parameter is 

𝜃" ∼ 𝑁 𝑚", 𝐶"
where 𝑚" is our initial guess at the state mean and 𝐶" is the 
initial guess of state variance. 𝐶" can easily be adjusted to 
reflect uncertainty in the initial state value. A higher value of 𝐶"
represents a more uncertain guess in 𝑚". 

From here, we can obtain a value for 𝜃# and subsequent 
state values using 

𝜃! = 𝐺!𝜃!$# +𝑤!
where 𝐺! is the known state transition matrix and 𝑤! is some 
Gaussian distributed error. The state updated equation is an 
autoregressive equation, with future state values depending only 
on the previous state. 

To find the value of an observation at time 𝑡 we use the 
observation equation: 

𝑌! = 𝐹!𝜃! + 𝑣!
where 𝐹! is the known observation matrix and 𝑣! is some 
Gaussian error. As can be seen, the observation at time 𝑡
depends on the state at time 𝑡, 𝜃!.

We use the conditional probability 𝜃!|𝑦#:! ∼ 𝑁(𝑚! , 𝐶!) to find 
the updating equation necessary for predictions. Our prediction 
of the state at time 𝑡 given the data up to that point has a 
gaussian distribution with mean 𝑚! and variance 𝐶!. This is 
reminiscent of the a traditional Bayesian filtering algorithm which

estimates state values up to and including the 
data up to that time 𝑡. This is not to be confused 
with a Bayesian smoothing algorithm which 
makes state estimations given the entire set of 
data all at once. 

We use the conditional probability 
𝜃&|𝑦#:& ∼ 𝑁(𝑚&, 𝐶&) to find the updating equation 
necessary for predictions. Our prediction of the 
state at time 𝑡 given the data up to that point has 
a gaussian distribution with mean 𝑚! and 
variance 𝐶!. 

The updated procedure is simple from here. 
We use Bayes formula where we have 

𝜋 𝜃& 𝑦#:& ∝5
!'#

&

𝜋 𝑦! 𝜃! 𝜋 𝜃!

Evaluating this gives the kernel of a normal 
distribution and a way of updating the distribution 
of 𝜃!|𝑦#:!. Now, given 𝜋 𝑦& 𝜃& = 𝑁 𝑦&; 𝜃&, 𝜎( we

can update the prior distribution for
𝜃&$#|𝑦#:&$# ∼ 𝑁 𝑚&$#, 𝐶&$# based on 𝑦&. The 
equations that are used for updating the state 
distribution are 

𝑚& = 𝑚&$# +
𝐶&$#

𝐶&$# + 𝜎(
(𝑦& −𝑚&$#)

and
𝐶& =

)!*"#$
*"#$+)!

.
The predictive distribution of 𝑌&+#|𝑦#:& is normal 
with mean 𝑚& and variance 𝐶& + 𝜎(. Thus, 𝑚& is 
the posterior expected value of 𝜃& and the 
forecasting expected value. 

We now cover the predictive distribution 
𝜃&|𝑦#:&$# ∼ 𝑁(𝑎&, 𝑅&). This distribution follows the 
formula 𝜃! = 𝐺!𝜃!$# +𝑤!|𝑦#:!$# where the error 𝑤!
has yet to be updated. 

By this point, change points can be calculated
since we have a conditional distribution and

predictive distribution for 𝜃& in 𝜃&|𝑦#:& ∼ 𝑁(𝑚&, 𝐶&)
and 𝜃&|𝑦#:&$# ∼ 𝑁(𝑎&, 𝑅&), respectively. A simple 
and intuitive way of considering if 𝑡 = 𝑛 is a 
change point would be to see if 𝑚& is an outlier in 
𝑁(𝑎&, 𝑅&). In other words, we want to see whether 
what we expect for 𝜃& aligns with what was 
predicted for 𝜃&. We can calculate this z-score by 
calculating z = (𝑚& − 𝑎&)/𝑅&. These z-scores can 
then be converted to p-values in the normal 
distribution using a z table or equivalent 
programming command. 

Another way of calculating the extremeness of 
a z-score is through extreme value theory. We 
want to calculate 𝑃,- 𝑧 𝑍. = 𝑃(max 𝑍. ≤ 𝑧)
where 𝑍. = 𝑧/ /'#

. . We are calculating the 
probability that, given some sequence of 𝑚 𝑧’s, 
the 𝑧 that we are observing is a maximum. I will 
show both approaches in the below analysis. 

Figure 1: Predicted change points using p-
values of 𝑚! in 𝑁(𝑎!, 𝑅!).

Figure 2: Predicted change points using the 
extreme value probability of 𝑚! in 𝑁(𝑎!, 𝑅!).

Both of the following analyses were 
conducted using R. The dlm package was 
used to implement the dynamic linear 
model formulae. This analysis was 
implemented on the smoothed number of 
new COVID-19 cases in Sierra Leone 
because of its relatively smooth COVID-19 
numbers. This made it easy to empirically 
determine change points and see whether 
the model was correctly characterizing 
change points.

The first analysis conducted focused 
on the z-scores calculated by taking 
0"$."
1"

∼ |𝑁 0,1 |. These z-scores were 
converted to p-values in the one-sided 
standard Gaussian distribution. A 
significance level of 0.05 was used to

observe the locations of change points. 
Even then, the model seems to identify 
large sequences of change points. 
Moreover, it fails to identify obvious 
changepoints, especially those at earlier 
times. In a lot of cases, change points are 
identified at times just past where change 
points should be appearing. 

The extreme value method doesn’t 
perform too much better, if at all. Again, 
large sequences of change points are 
being found. In addition, it also fails to 
identify apparent change points. The one 
advantage that this model takes is that, 
when change points are detected, this 
method much better characterizes them at 
or near the change point, not after the 
change point has appeared. 

Future Work
The most pressing work would be to determine why 

some change points are being detected and others aren’t, 
especially in the case of the extreme value method. This 
method was one which showed the ability to correctly 
identify change points, albeit not all that were present. More 
work could be done with optimizing a cutoff point for change 
points as well as removing the ambiguity of having a long 
sequence of change points. Once the method has been 
improved, it can then be implemented on other countries. 


