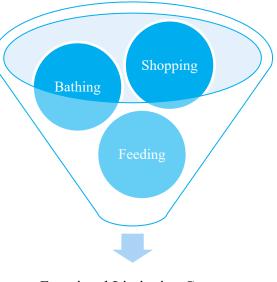
CS5d: Latent Class and Latent Transition Analysis: LCA and LTA: A Guide to Practice

Date: Sat, Oct 8, 2022 Time: 8:45 AM - 10:15 AM CDT

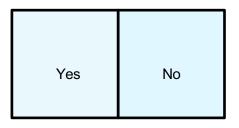
Zhe Wang, Ph.D Assistant Professor, Data Analytics Denison University

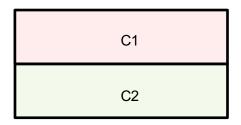

Outline

- ► LCA and LTA Model Specification
- ► LCA and LTA Output Interpretation
- Model Selection
- ► Assumption and Limitation
- ► Summary

Observed Variable and Latent Variable

- ► Observed Variables:
 - Can be measured
 - Categorical variables


- Latent Variables:
 - Can not be measured directly
 - Categorical variables


Functional Limitation Group

LCA Model Specification

- Observed Categorical Variables:
 - Y: Have difficulty dressing?
 - 1 =Yes, 2 =No
 - with marginal probability p_1, p_2

- Pre-selected 2 Latent Class
 - *C*: latent functional limitation group 1 or 2
 - with latent prevalence γ_1, γ_2

LCA Model Specification

- Observed Categorical Variables:
 - Have difficulty dressing?
 - 1 =Yes, 2 =No
 - with marginal probability p_1, p_2

- Pre-selected 2 Latent Class
 - *C*: latent functional limitation group 1 or 2
 - with latent prevalence γ_1, γ_2

Yes & C1	No & C1
Yes & C2	No & C2

$$P(Yes) = P(Yes \& C1) + P(Yes \& C2)$$

$$P(Y = 1) = \frac{P(Y = 1|C = 1)P(C = 1) + P(Y = 1|C = 2)P(C = 2)}{p_1 = \rho_{1|1}\gamma_1 + \rho_{1|2}\gamma_2}$$

$$p_1 = \sum \gamma_c \rho_{1|c}$$

LCA General Parameters Definition

- Observed categorical variable: Y_1, \dots, Y_M ;
- Each $Y_m(m = 1, 2, ..., M)$ has $r_m(1, 2, ..., R_m)$ different levels;
- Unobserved latent variable has C(c = 1, 2, ..., C) different groups;

- Latent class prevalence γ_c
- Item-response probability $\rho_{r_m|c}$
- The marginal probability of observing $y_1, ..., y_M$ is

$$P(Y_{i} = y_{i}) = \sum_{c=1}^{C} \gamma_{c} \prod_{m=1}^{M} \prod_{r_{m}=1}^{R_{m}} \rho_{r_{m}|c}^{I(y_{m}=r_{m})}$$

Latent Group 1	Latent Group 2	
0.80	0.20	

80% of the patients were in Latent Group 1.

20% of the patients were in Latent Group 2.

Indicato	r	Latent Group 1	Latent Group 2	
Do you have difficulty in	Yes		0.85	
dressing?	No		0.15	
	1			
Var 2	2			
	3			

Among patients who were in Latent Group 2, **85%** of them had difficulty dressing.

From LCA to LTA

- ► Latent Transition Analysis (LTA) is a longitudinal extension of LCA
- ► In LCA, class membership is static
- ► In LTA, class membership is dynamic
- Development can be represented as movement through discrete categories or stages
- ▶ Provides a way to estimate and test models of stage-sequential development

LTA Model Specification

- Observed Categorical Variables:
 - Y: Have difficulty dressing?
 - 1 =Yes, 2 =No
 - with marginal probability at 2 time points (p₁₁, p₂₁), (p₁₂, p₂₂)

- Pre-selected 2 Latent Class
 - *C*: latent functional limitation group 1 or 2
 - with latent prevalence at the initial time

points $(\gamma_{1_1}, \gamma_{2_1})$

Yes & C1	No & C1			Yes&C1	No & C1
Tes & CT		Time 1 🛛 🗕 🛶	Time 2		
Yes & C2	No & C2			Yes&C2	No & C2

LTA General Parameters Definition

- Observed categorical variable: Y_1, \dots, Y_M ;
- Each $Y_m(m = 1, 2, ..., M)$ has $r_m(1, 2, ..., R_m)$ different levels;
- Unobserved latent variable has C(c = 1, 2, ..., C) different groups;
- T(t = 1, 2, ..., T) different time points.
- γ_{c_1} = Latent class prevalence at Time 1
- $\rho_{r_m|c_t}$ = Item-response probabilities at Time t
- $\tau_{c_t|c_{t-1}}$ = Transition probabilities of latent class c_t at time t, conditional on membership in latent class c_{t-1} at time t 1, e.g. $\tau_{1_2|2_1}$

$$P(Y_i = y_i) = \sum_{c_1=1}^{C} \dots \sum_{c_T=1}^{C} \gamma_{c_1} \tau_{c_2|c_1} \dots \tau_{c_t|c_{t-1}} \prod_{m=1}^{M} \prod_{r_m=1}^{R_m} \prod_{t=1}^{T} \rho_{r_m|c_t}^{I(y_m=r_m)}$$

	Latent Group 1	Latent Group 2	
Time 1	0.80	0.20	
Time 2	0.70	0.30	

At Time 1, 80% of the patients were in Latent Group 1, and 20% of the patients were in Latent group 2.

The numbers at time 2 are 70% and 30%.

Indicator (Time 1)		Latent Group 1	Latent Group 2	
Do you have difficulty in	Yes		0.85	
dressing?	No		0.15	
Var 2	1			
	2			

Among patients who were in Latent Group 2, **85%** of them had difficulty dressing, and **15%** of didn't have this issue.

Time 1 \ Time 2	Latent Group 1	Latent Group 2	
Latent Group 1	0.80	0.20	
Latent Group 2			

For patients who were in Latent Group 1 at Time 1,
80% of them were in Latent Group 1 at Time 2;
20% of them transferred to Latent Group 2 at Time 2.

Model Selection Criteria and Model Diagnostics

Fit Statistics	Thresholds	Recommendation
AIC		For analyses where $n < 300$, we advise using and
CAIC	The lower the better	reporting the AIC and BIC.
BIC		For all analyses, we recommend using and
SABIC		reporting BIC and SABIC.
VLMR-LRT	< 0.05	Use to test if a model with k classes is better than
BLRT		model with $k-1$ class.
Log-Likelihood	The higher the better	Log-likelihood will be maximized using EM algorithm. It cannot be used to compare models.
Entropy	>0.8	We advise reporting entropy for model diagnostics but not relying on the value to determine a final class solution.

* Aflaki, Kayvan, Simone Vigod, and Joel G. Ray. "Part II: A Step-by-Step Guide to Latent Class Analysis." *Journal of Clinical Epidemiology* (2022).

Model Assumptions

Local independence assumption:

► latent class variable accounts for all relations between the observed variables

Conditional independence assumption:

• observed variables are independent conditional on the latent variable

Missingness assumption:

• the model assume data are missing at random

Markov assumption(LTA):

► the change over time only depends on one measurement time before

Limitation 1:

▶ Proper class assignment is not guaranteed

С	LL	AIC	CAIC	BIC	SABIC	BLRT p	VLMR- LRT p
1	-11238.18	9428.707	9572.890	9548.890	9472.660	-	-
2	-9909.352	6821.055	7115.427	7066.427	6910.791	<0.001	<0.001
3	-9663.649	6379.651	6824.213	6750.213	6515.171	<0.001	0.0342
4	-9480.225	6062.801	6657.554	6558.554	6244.106	<0.001	0.3282
5	-9384.330	5921.011	6665.953	6541.953	6148.099	<0.001	0.1519
6	-9303.139	5808.629	6703.762	6554.762	6081.501	<0.001	0.7559
7	-9234.914	5722.180	6767.503	6593.503	6040.836		

Simulation studies suggest the first time the p-value of LMR test is non-significant might be good indication to stop increasing the number of class. *

Nylund, K.L., Asparouhov, T.I.H.O.M.I.R. and Muthén, B.O., 2007. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. *Structural Equation Modeling*, *14*, pp.535-69.

Limitation 2:

► Naming fallacy for latent classes

Have deficits in	Class 1	Class 2	Have deficits in	Class 1	
Eating	0.710	0.178	Eating	0.710	
Walking	0.895	0.040	Walking	0.411	
Managing Money	0.113	0.911	Managing Money	0.956	
Faking Med.	0.131	0.860	Taking Med.	0.231	

Table: Item response probabilities for patients having deficits in the listed activities.

Limitation 3:

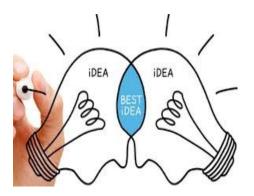
▶ Can not deal with multicollinearity and complex patterns

Finances -	0.96	0.89	0.86	0.94	0.87	0.91	1	1	0.99	1	1	0.93	1	1		
Meds -	0.96	0.89	0.86	0.94	0.87	0.91	1	1	0.99	1	1	0.93	1	1		
Transport -	0.89	0.83	0.83	0.9	0.83	0.87	0.93	0.93	0.92	0.93	0.93	1	0.93	0.93		
Laundry -	0.96	0.89	0.86	0.94	0.87	0.91	1	1	0.99	1	1	0.93	1	1		
Housekeep -	0.96	0.89	0.86	0.94	0.87	0.91	1	1	0.99	1	1	0.93	1	1	val	u
FoodPrep -	0.94	0.88	0.88	0.93	0.89	0.93	0.99	0.99	1	0.99	0.99	0.92	0.99	0.99		l
Shopping -	0.96	0.89	0.86	0.94	0.87	0.91	1	1	0.99	1	1	0.93	1	1		1
Phone -	0.96	0.89	0.86	0.94	0.87	0.91	1	1	0.99	1	1	0.93	1	1		
Bathing -	0.96	0.9	0.93	0.97	0.93	1	0.91	0.91	0.93	0.91	0.91	0.87	0.91	0.91		
Ambulation -	0.92	0.86	0.89	0.93	1	0.93	0.87	0.87	0.89	0.87	0.87	0.83	0.87	0.87		
Grooming -	0.99	0.93	0.92	1	0.93	0.97	0.94	0.94	0.93	0.94	0.94	0.9	0.94	0.94		
Dressing -	0.91	0.97	1	0.92	0.89	0.93	0.86	0.86	0.88	0.86	0.86	0.83	0.86	0.86		
Feeding -	0.94	1	0.97	0.93	0.86	0.9	0.89	0.89	0.88	0.89	0.89	0.83	0.89	0.89		
Toilet -	1	0.94	0.91	0.99	0.92	0.96	0.96	0.96	0.94	0.96	0.96	0.89	0.96	0.96		
	Toilet	Feeding	Dressing	Grooming	Ambulation	Bathing	Phone	Shopping	FoodPrep	Housekeep	Laundry	Transport	Meds	Finances		

1.00 0.96 0.92 0.88 0.84

LCA Summary

- ► Step 0: Study descriptive statistics and test on assumptions
- ▶ Step 1: Starting with a one-class model, and add one class at a time,
- ► Step 2: Compare model fit statistics to identify the best model
- ► Step 3: Explore specification of the LCA without covariates
- ► Step 4: Extend the model complexity, e.g. add covariates or distal outcomes
- ► Step 5: Report the results


LTA Summary

- ► Step 0: Study descriptive statistics and test on assumptions
- Step 1: Conduct LCA at each time point. Compare model fit statistics to identify the best model at each time point
- ► Step 2: Test measurement invariance if the same number of classes emerge in Step 1
- ► Step 3: Explore specification of the latent transition model without covariates
- ► Step 4: Extend the model complexity, e.g. add covariates or distal outcomes
- ► Step 5: Report the results

The End

Please email: wangz@denison.edu

• To discuss further about these studies or your ideas

